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Questions for the LHC

Where is the Higgs?

What is the next layer of fundamental matter?

What is the origin of the weak scale?

Is naturalness a valid physical principle?

What is the dark matter?

Supersymmetry?



Real-world SUSY-breaking
Superpartners not observed => SUSY must be broken in 
the real world

SUSY-breaking in the MSSM is explicit and must be soft 
(dimensionful) in order to not re-introduce quadratic 
divergences.

Naturalness: expect typical size of soft masses around 
Mz, i.e. 100-1000 GeV
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SUSY Flavor Problem
There are strong experimental constraints on SUSY-
breaking in the MSSM.

The soft Lagrangian contains 100+ parameters in 
addition to the SM couplings. A generic point in this 
parameter space is experimentally ruled out:
- Precision flavor-changing tests
- Non-observation of superpartners



Mediation of SUSY

Ultimately, SUSY must be broken spontaneously in a 
separate hidden sector (Dimopoulos & Georgi). 

Constraints on the soft Lagrangian => 
constraints on how SUSY-breaking is ``mediated” from 
hidden sector to the MSSM.

Gauge mediation is a calculable, viable framework 
that automatically solves the SUSY flavor problem.

Hidden sector:
SUSY+...

Visible sector:
MSSM+...SU(3)xSU(2)xU(1)



X is a singlet spurion for hidden sector SUSY-breaking.

   are messengers in real representations of       .

Through their coupling to X, they receive tree-level 
SUSY-breaking mass splittings:

Loops of the messengers and SM gauge fields 
communicate SUSY-breaking to the MSSM.

Minimal gauge mediation
(Dine, Nelson, Nir, Shirman, …)
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1-loop gaugino masses:

2-loop sfermion mass-squareds:

Figure 6.3: Contributions to the MSSM gaugino masses
in gauge-mediated supersymmetry breaking models come
from one-loop graphs involving virtual messenger parti-
cles.

B̃, W̃ , g̃

〈FS〉

〈S〉

Replacing S and FS by their VEVs, one finds quadratic mass terms in the potential for the messenger
scalar leptons:

V = |y2〈S〉|2(|!|2 + |!|2) + |y3〈S〉|2(|q|2 + |q|2)
−

(
y2〈FS〉!! + y3〈FS〉qq + c.c.

)

+ quartic terms. (6.49)

The first line in eq. (6.49) represents supersymmetric mass terms that go along with eq. (6.44), while
the second line consists of soft supersymmetry-breaking masses. The complex scalar messengers !, !
thus obtain a squared-mass matrix equal to:

( |y2〈S〉|2 −y∗2〈F ∗
S〉

−y2〈FS〉 |y2〈S〉|2
)

(6.50)

with squared mass eigenvalues |y2〈S〉|2 ± |y2〈FS〉|. In just the same way, the scalars q, q get squared
masses |y3〈S〉|2 ± |y3〈FS〉|.

So far, we have found that the effect of supersymmetry breaking is to split each messenger super-
multiplet pair apart:

!, ! : m2
fermions = |y2〈S〉|2 , m2

scalars = |y2〈S〉|2 ± |y2〈FS〉| , (6.51)

q, q : m2
fermions = |y3〈S〉|2 , m2

scalars = |y3〈S〉|2 ± |y3〈FS〉| . (6.52)

The supersymmetry violation apparent in this messenger spectrum for 〈FS〉 $= 0 is communicated to
the MSSM sparticles through radiative corrections. The MSSM gauginos obtain masses from the 1-loop
Feynman diagram shown in Figure 6.3. The scalar and fermion lines in the loop are messenger fields.
Recall that the interaction vertices in Figure 6.3 are of gauge coupling strength even though they do not
involve gauge bosons; compare Figure 3.3g. In this way, gauge-mediation provides that q, q messenger
loops give masses to the gluino and the bino, and !, ! messenger loops give masses to the wino and
bino fields. Computing the 1-loop diagrams, one finds [142] that the resulting MSSM gaugino masses
are given by

Ma =
αa

4π
Λ, (a = 1, 2, 3), (6.53)

in the normalization for αa discussed in section 5.4, where we have introduced a mass parameter

Λ ≡ 〈FS〉/〈S〉 . (6.54)

(Note that if 〈FS〉 were 0, then Λ = 0 and the messenger scalars would be degenerate with their
fermionic superpartners and there would be no contribution to the MSSM gaugino masses.) In contrast,
the corresponding MSSM gauge bosons cannot get a corresponding mass shift, since they are protected
by gauge invariance. So supersymmetry breaking has been successfully communicated to the MSSM
(“visible sector”). To a good approximation, eq. (6.53) holds for the running gaugino masses at an RG
scale Q0 corresponding to the average characteristic mass of the heavy messenger particles, roughly of
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Figure 6.4: MSSM scalar squared masses in gauge-mediated supersymmetry breaking models arise in
leading order from these two-loop Feynman graphs. The heavy dashed lines are messenger scalars, the
solid lines are messenger fermions, the wavy lines are ordinary Standard Model gauge bosons, and the
solid lines with wavy lines superimposed are the MSSM gauginos.

order Mmess ∼ yI〈S〉 for I = 2, 3. The running mass parameters can then be RG-evolved down to the
electroweak scale to predict the physical masses to be measured by future experiments.

The scalars of the MSSM do not get any radiative corrections to their masses at one-loop order.
The leading contribution to their masses comes from the two-loop graphs shown in Figure 6.4, with
the messenger fermions (heavy solid lines) and messenger scalars (heavy dashed lines) and ordinary
gauge bosons and gauginos running around the loops. By computing these graphs, one finds that each
MSSM scalar φi gets a squared mass given by:

m2
φi

= 2Λ2

[(
α3

4π

)2

C3(i) +
(

α2

4π

)2

C2(i) +
(

α1

4π

)2

C1(i)

]

, (6.55)

with the quadratic Casimir invariants Ca(i) as in eqs. (5.27)-(5.30). The squared masses in eq. (6.55)
are positive (fortunately!).

The terms au, ad, ae arise first at two-loop order, and are suppressed by an extra factor of αa/4π
compared to the gaugino masses. So, to a very good approximation one has, at the messenger scale,

au = ad = ae = 0, (6.56)

a significantly stronger condition than eq. (5.19). Again, eqs. (6.55) and (6.56) should be applied at
an RG scale equal to the average mass of the messenger fields running in the loops. However, evolving
the RG equations down to the electroweak scale generates non-zero au, ad, and ae proportional to the
corresponding Yukawa matrices and the non-zero gaugino masses, as indicated in section 5.5. These
will only be large for the third-family squarks and sleptons, in the approximation of eq. (5.2). The
parameter b may also be taken to vanish near the messenger scale, but this is quite model-dependent,
and in any case b will be non-zero when it is RG-evolved to the electroweak scale. In practice, b can be
fixed in terms of the other parameters by the requirement of correct electroweak symmetry breaking,
as discussed below in section 7.1.

Because the gaugino masses arise at one-loop order and the scalar squared-mass contributions
appear at two-loop order, both eq. (6.53) and (6.55) correspond to the estimate eq. (6.27) for msoft, with
Mmess ∼ yI〈S〉. Equations (6.53) and (6.55) hold in the limit of small 〈FS〉/yI〈S〉2, corresponding to
mass splittings within each messenger supermultiplet that are small compared to the overall messenger
mass scale. The sub-leading corrections in an expansion in 〈FS〉/yI〈S〉2 turn out [143] to be quite small
unless there are very large messenger mass splittings.

The model we have described so far is often called the minimal model of gauge-mediated supersym-
metry breaking. Let us now generalize it to a more complicated messenger sector. Suppose that q, q
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MGM soft masses are controlled by essentially only 
one scale: F/M.

This leads to many specific and well-known 
“predictions” of gauge mediation: 

Gaugino unification

Sfermion mass hierarchy

Bino or slepton NLSP

....

MGM Phenomenology

squarks, gluino

L-handed sleptons, wino

R-handed sleptons, bino
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Beyond MGM

To date, many models of gauge mediation have been 
constructed, with a wide variety of predictions. 

Questions:

What are the universal predictions of gauge 
mediation? 

How large is the parameter space?

If we find hints of supersymmetry at the LHC, how 
can we tell whether it’s gauge mediation?



Plan of the Talk
Background and Motivation

General Gauge Mediation
- Formulas for the soft masses
- Sum rules
- Parameter space

General Messenger Gauge Mediation
- Rewriting the soft masses
- Superpotential vs. Kahler potential interactions
- Simplifying limits

Summary and Outlook



General Gauge Mediation
(Meade, Seiberg & DS)

Hidden sector:
spontaneously breaks SUSY at a scale M
has a weakly-gauged global symmetry              
includes messengers, if present

Theory decouples into separate hidden and visible sectors 
in g->0 limit.

Philosophy: work exactly in the hidden sector but to 
leading order in g.

Hidden sector
SUSY+...

Visible sector:
MSSM+...SU(3)xSU(2)xU(1)

G ⊃ GSM



Current Supermultiplet
All the information we need about the hidden sector is 
encoded in the currents of G and their correlation 
functions.

The current belongs to a supermultiplet:

In superspace, the SUSY generalization of current 
conservation is 

jµ → (J, jα, j̄α̇, jµ) (Assume G=U(1) 
for simplicity)

D2J = 0

J = J + iθj − iθ̄j̄ − θ̄σµθjµ + . . .



Current two-point 
functions

By current conservation and Lorentz invariance, the 
nonzero two-point functions are:

If SUSY is unbroken, can show:

�J(x)J(0)� → C0(x)
�jα(x)j̄α̇(0)� → C1/2(x)
�jµ(x)jν(0)� → C1(x)
�jα(x)jβ(0)� → B(x)

Real

Complex

}
C0 = C1/2 = C1, B = 0



Coupling to visible sector
Weakly gauge G=U(1):        

Integrate out hidden sector exactly. Effective theory 
for the gauge supermultiplet:

Soft terms can be written in terms of the current-
current correlators.

δLeff =
1
2
g2C̃0(0)D2 − g2C̃1/2(0)iλσµ∂µλ̄− 1

4
g2C̃1(0)FµνFµν

−1
2
g2(MB̃(0)λλ + c.c.) + . . .

Lint = g

�
d4θJV +O(g2)

= g(JD + λαjα + λ̄α̇j̄α̇ + V µjµ) +O(g2)



Coupling to visible sector

Gaugino mass:

Sfermion mass:

db c

a

e
Fig. 1: The graphical description of the contributions of the two point functions
to the soft masses. (a) represents the gaugino mass contribution from 〈jαjβ〉. In

(b)-(e) the various contributions to the soft scalar masses are given: (b) 〈J〉, (c)
〈JJ〉, (d) 〈jαjα̇〉, and (e) 〈jµjν〉. It should be stressed that the blobs in the figures

represent hidden sector correlation functions. The leading contribution in theories

with messengers arises from one loop of the messengers, but in general when there
are no messengers, it is more complicated.

So far we have discussed the simpler case of a single U(1) gauge group here, in the

case of the actual MSSM one has to consider the separate SU(3), SU(2) and U(1) gauge

groups. We will label the gauge groups by r = 3, 2, 1, respectively. If we want the gauge

couplings to unify, then the value of c(r) = c must be independent of r (assuming SU(5)

normalization of the U(1) factor of course) and we want the thresholds C̃(r)
a (0) to depend

weakly on r. Moreover, if we want perturbative unification, then there is an upper bound

on the magnitude of c. These are examples of some completely general constraints on the

SUSY breaking sector that can be derived using our formalism.

Now, it is straightforward to find the sfermion and gaugino masses of the MSSM.

In Figure 1 we show the diagrams involving the current correlation functions which are

responsible for the MSSM soft masses.

The gaugino masses arise at tree level in the effective theory (3.2); to leading order
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Generalizing to 
SU(3)xSU(2)xU(1)

Trivial to generalize from U(1) to SU(3)xSU(2)xU(1)

Each gauge group factor comes with a current 
supermultiplet

Gaugino and sfermion masses are given by the same 
formulas as before, convolved with group theory factors:

Quadratic Casmir

J → Jr=1,2,3

Mr = g2
rMBr

m2
f̃

=
3�

r=1

Cr
f̃
g4

rAr



Sum Rules

Five MSSM sfermion masses f=Q,U,D,L,E are given in terms 
of 3 parameters            . So there must be 2 relations. 

These take the form:

Sum rules true at the scale M. (Small) corrections from RG 
and EWSB. 

These relations were known before in specific different 
models (Martin & Ramond; Faraggi et al; Kawamura et al; Martin; 
Dimopoulos et al). Here we see they are completely general.

Ar=1,2,3

TrY m2 = Tr (B − L)m2 = 0

m2
f̃

=
3�

r=1

Cr
f̃
g4

rAr



Parameter space
The GGM parameter space consists of 9 real 
parameters: 

Comments:
SUSY CP problem in general

Gauge coupling unification not tied to gaugino unification

Parameter space much larger than minimal gauge mediation, 
where

A1,2,3, |B1,2,3|, arg(B1,2,3)

Br =
F

M
, Ar =

�
F

M

�2



Parameter space
Question: are there simple models of weakly coupled 
messengers that cover the entire parameter space?

We are looking for an ``existence proof”

Carpenter, Dine, Festuccia & Mason studied this 
question recently in the context of messenger models 
with small F-type SUSY breaking. 
(Cf. S. Martin, hep-ph/9608224.)

They found models with the right number of 
parameters (6) but which did not cover the entire 
parameter space.



Parameter space

By considering messenger models with additional D-type 
splittings, one can cover the entire parameter space of 
GGM (Buican, Meade, Seiberg, DS).

Such splittings could come from e.g. a U(1)’ with an 
effective FI parameter (Poppitz & Trivedi; Nakayama et al), or 
from hidden sector gauge dynamics as in “semi-direct 
gauge mediation” (Seiberg, Volansky & Wecht). 

The entire parameter space is physical and should be 
used as the basis for future phenomenological 
explorations of gauge mediation!

Mmess =
�

M2 F
F M2

�
→

�
M2 + D F

F M2 −D

�
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Messenger Models 
Revisited

Parameter space of GGM is much larger than MGM -- 
more general, but less predictive.

Most models of gauge mediation are messenger 
models. These tend to have fewer parameters and to 
be more predictive. 

How do we describe the most general messenger 
model in the GGM framework?



General Messenger 
Gauge Mediation

SUSY-breaking and messenger sectors can be strongly 
coupled, but they are weakly coupled to one another.

Recast everything in terms of operators and their 
correlation functions. 

This framework should include all messenger models...

SUSY sector Visible sector
SU(3)xSU(2)xU(1)

Messenger 
sector

SM singlets
Scale: 

√
F MweakM

 Supersymmetric
SM charged fields
     Scale: 

MSSM+...
Scale: 

(Dumitrescu, Komargodski, Seiberg, DS)

Lint



General Messenger 
Gauge Mediation

Most general interaction between messenger and 
SUSY-breaking sector:

We would like to systematically expand in powers of 
the interactions and derive the leading-order soft 
masses in GMGM.

For this it is useful to rewrite the GGM soft masses in 
a more convenient form...

Lint =
λ

Λ∆h+∆m−3

�
d2θOhOm +

λ̃

Λ∆̃h+∆̃m−2

�
d4θ ÕhÕm + c.c.



Recall the chiral supermultiplet

By analogy, an equivalent formulation of the current 
s’multiplet is to start with the defining relation:

It follows that: jα ≡ QαJ

j̄α̇ ≡ Q̄α̇J

σµ
αα̇jµ ≡ [Qα, Q̄α̇]J

Rewriting the soft masses

D2J = D̄2J = 0 ⇐⇒ Q2J = Q̄2J = 0

D̄Φ = 0 ⇔ Qφ = 0



Rewriting the soft masses
Using action of supercharges, can show:

Similar manipulations lead to

�Q2J(p)J(−p)� = �QαJ(p)QαJ(−p)�
= �jα(p)jα(−p)�
= MB(p)

�Q2Q̄2J(p)J(−p)� =

p2
�
3C1(p2/M2) − 4C1/2(p2/M2) + C0(p2/M2)

�



Thus:

Comments on the result:

Check: vanish when SUSY is unbroken.

At high momentum, only the JJ OPE matters. Can use this 
to prove convergence of the scalar mass integral.

Mλ = g2�Q2J(0)J(0)�

m2
f̃

= g4

�
dp2

p2
�Q2Q̄2J(p)J(−p)�

Rewriting the soft masses

(Buican, Meade, 
Seiberg, DS)



Soft Masses in GMGM

Using rewritten GGM formulas, it is straightforward to 
work out leading-order GMGM soft masses for 
different types of interactions.

Key simplifications arise from treating interactions 
perturbatively:

Correlators factorize into separate correlators in 
messenger sector and SUSY-breaking sector.
Messenger sector correlators are supersymmetric.

Mλ = g2�Q2J(0)J(0)�

m2
f̃

= g4

�
dp2

p2
�Q2Q̄2J(p)J(−p)�



Kahler potential interactions

Comments:

Gaugino masses can vanish at this order if messenger 
sector is R-symmetric. 

F-component of      does not contribute to gaugino 
masses. Seen previously in many examples...

Lint =
λ̃

Λ∆̃h+∆̃m−2

�
d4θ ÕhÕm + c.c.

�Q2J(x)J(0)� =
λ̃

Λ∆̃h+∆̃m−2

�
Q4
Õh

� �
d4y

��
Q2
Õm(y)

�
J(x)J(0)

�

�Q4J(x)J(0)� =
λ̃

Λ∆̃h+∆̃m−2

�
Q4
Õh

� �
d4y

��
Q4
Õm(y)

�
J(x)J(0)

�

Õh



Kahler potential interactions

Comments:

                       . Scalars much heavier than gauginos. 
Split-SUSY phenomenology (Arkani-Hamed & Dimopoulos; Giudice 
& Romanino). Exacerbated little hierarchy problem.

This setup includes semi-direct gauge mediation (Seiberg, 
Volansky & Wecht).

Lint =
λ̃

Λ∆̃h+∆̃m−2

�
d4θ ÕhÕm + c.c.

�Q2J(x)J(0)� =
λ̃

Λ∆̃h+∆̃m−2

�
Q4
Õh

� �
d4y

��
Q2
Õm(y)

�
J(x)J(0)

�

�Q4J(x)J(0)� =
λ̃

Λ∆̃h+∆̃m−2

�
Q4
Õh

� �
d4y

��
Q4
Õm(y)

�
J(x)J(0)

�

M2
g̃ ∼ λ̃2 � m2

f̃
∼ λ̃



Superpotential interactions

Includes MGM, EOGM (Cheung, Fitzpatrick, DS), ...

Now sfermion and gaugino masses appear at the same 
order in the interaction -- a more natural spectrum.

However, the sfermion masses are not completely 
factorized. 

Lint =
λ

Λ∆h+∆m−3

�
d2θOhOm + c.c.

�Q4J(x)J(0)� =
λ2

Λ2(∆h+∆m−3)

�
d4y d4y�

�
Q4

�
O

†
h(y)Oh(y�)

��

×
�
Q4

�
O

†
m(y)Om(y�)

�
J(x)J(0)

�

�Q2J(x)J(0)� =
λ

Λ∆h+∆m−3
�Q2

Oh�

�
d4y �Q2(Om(y))J(x)J(0)�



Factorization in a simplifying limit: F<<M2

The SUSY-breaking sector correlator should be 
evaluated at short distance. So we can use the OPE:

Simplifying limit
�Q4J(x)J(0)� =

λ2

Λ2(∆h+∆m−3)

�
d4y d4y�

�
Q4

�
O

†
h(y)Oh(y�)

��

×
�
Q4

�
O

†
m(y)Om(y�)

�
J(x)J(0)

�

|y − y�|1√
F

1
M

O
†
h(y)Oh(y�) ∼ · · · +

O∆

(y − y�)∆−2∆h
+ . . .

�Q4
O∆� �= 0

Messenger-sector correlator 
decays exponentially



Simplifying limits
�Q4J(x)J(0)� =

λ2�Q4O∆�

Λ2(∆h+∆m−3)

�
d4y d4y�

�
Q4

�
O†

m(y)Om(y�)
�
J(x)J(0)

�

(y − y�)2∆h−∆

In this limit, ratio of sfermion to gaugino masses depends 
on Δ:

We recognize the phenomenon of hidden-sector 
renormalization described in Cohen, Roy & Schmaltz!
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Simplifying limit

If hidden sector is free @ messenger scale, then must 
have            with equality only for elementary 
singlets. Then              or            .

If hidden sector is interacting CFT @ messenger scale, 
then Δ in principle unconstrained. If            , can 
get sfermions much lighter than gauginos.  

m2
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M2
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∼
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F

M

�∆−2∆h

∆ ≤ 2∆h

m2
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�M2

g̃ m2
f̃
∼M2
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∆ > 2∆h

This is the relevant regime for many interesting models: 
gaugino mediation, conformal sequestering, strong 
hidden sector solution to mu problem...



Summary
We constructed a framework for analyzing general 
models of gauge mediation: arbitrary hidden sectors 
coupled to the MSSM via SM gauge interactions.

Using our framework, we derived general properties of 
gauge mediation. These include:

Parameter space: 3 complex parameters (gaugino masses)
and 3 real parameters (sfermion masses)
Two sum rules for sfermion masses
SUSY CP problem in general

We constructed weakly-coupled messenger models 
which cover the entire GGM parameter space.



Summary
We also built a framework within GGM to describe the 
most general messenger models of gauge mediation.

We saw how the framework incorporated existing 
models and their phenomena. 

We also showed how the ratio of gaugino to sfermion 
masses depended on the type of interaction between 
messenger and SUSY-breaking sector, as well as the 
dynamics of these sectors. 



Future Directions
Detailed study of GGM at colliders. New, unexplored 
signatures at the Tevatron and the LHC! (Carpenter; 
Rajaraman et al.; Katz & Tweedie; Meade, Reece & DS; Kribs, 
Martin, Roy, Spannowsky)

Is             really possible in a SCFT? (Cf. Rattazzi, 
Rychkov, Tonni & Vichi; Hellerman)

Extensions of GMGM framework to include mu/Bmu 
sector? (Cf. Komargodski & Seiberg)

Can we prove positivity of sfermion masses in any 
context?

∆ > 2∆h



The End



Messenger Parity

We have related the soft masses to the current two-
point functions. However, we ignored the contribution 
of the hypercharge one-point function (FI parameter):

It is dangerous because it contributes to the scalar 
masses:

Not positive definite and lower order in g. So this can 
cause some scalars (esp. sleptons) to become 
tachyonic!

�J1� = ζ �= 0

δm2
f̃

= g2
1Yfζ



Messenger Parity
Thus we would like the hidden sector to be invariant 
under a symmetry that forbids J one-point functions. 

The simplest such symmetry is a Z_2 parity:

Examples of this symmetry in the context of minimal 
gauge mediation have been discussed in the 
literature. (Dine & Fischler; Dimopoulos & Giudice)

J → −J


